Direct observation of a long-lived single-atom catalyst chiseling atomic structures in graphene.

نویسندگان

  • Wei Li Wang
  • Elton J G Santos
  • Bin Jiang
  • Ekin Dogus Cubuk
  • Colin Ophus
  • Alba Centeno
  • Amaia Pesquera
  • Amaia Zurutuza
  • Jim Ciston
  • Robert Westervelt
  • Efthimios Kaxiras
چکیده

Fabricating stable functional devices at the atomic scale is an ultimate goal of nanotechnology. In biological processes, such high-precision operations are accomplished by enzymes. A counterpart molecular catalyst that binds to a solid-state substrate would be highly desirable. Here, we report the direct observation of single Si adatoms catalyzing the dissociation of carbon atoms from graphene in an aberration-corrected high-resolution transmission electron microscope (HRTEM). The single Si atom provides a catalytic wedge for energetic electrons to chisel off the graphene lattice, atom by atom, while the Si atom itself is not consumed. The products of the chiseling process are atomic-scale features including graphene pores and clean edges. Our experimental observations and first-principles calculations demonstrated the dynamics, stability, and selectivity of such a single-atom chisel, which opens up the possibility of fabricating certain stable molecular devices by precise modification of materials at the atomic scale.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Design of a new reactor-like high temperature near ambient pressure scanning tunneling microscope for catalysis studies.

Here, we present the design of a new reactor-like high-temperature near ambient pressure scanning tunneling microscope (HT-NAP-STM) for catalysis studies. This HT-NAP-STM was designed for exploration of structures of catalyst surfaces at atomic scale during catalysis or under reaction conditions. In this HT-NAP-STM, the minimized reactor with a volume of reactant gases of ∼10 ml is thermally is...

متن کامل

Atomic Scale Study on Growth and Heteroepitaxy of ZnO Monolayer on Graphene

Atomically thin semiconducting oxide on graphene carries a unique combination of wide band gap, high charge carrier mobility, and optical transparency, which can be widely applied for optoelectronics. However, study on the epitaxial formation and properties of oxide monolayer on graphene remains unexplored due to hydrophobic graphene surface and limits of conventional bulk deposition technique....

متن کامل

Graphene Coatings for the Mitigation of Electron Stimulated Desorption and Fullerene Cap Formation

Graphene already has numerous applications in transmission electron microscopy. Here, we extend its application in electron microscopy by demonstrating its potential to stop electron induced desorption in nonconducting samples, where in essence charge build-up leads to surface atom desorption. Graphene films provide a conduction pathway to prevent charge build-up and do not interfere with the i...

متن کامل

Scanning Tunneling Microscopy of the π Magnetism of a Single Carbon Vacancy in Graphene.

Pristine graphene is strongly diamagnetic. However, graphene with single carbon atom defects could exhibit paramagnetism. Theoretically, the π magnetism induced by the monovacancy in graphene is characteristic of two spin-split density-of-states (DOS) peaks close to the Dirac point. Since its prediction, many experiments have attempted to study this π magnetism in graphene, whereas only a notab...

متن کامل

Atomic layer deposited oxide films as protective interface layers for integrated graphene transfer.

The transfer of chemical vapour deposited graphene from its parent growth catalyst has become a bottleneck for many of its emerging applications. The sacrificial polymer layers that are typically deposited onto graphene for mechanical support during transfer are challenging to remove completely and hence leave graphene and subsequent device interfaces contaminated. Here, we report on the use of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Nano letters

دوره 14 2  شماره 

صفحات  -

تاریخ انتشار 2014